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Multiple Logistic Regression

• The logistic regression is easily extended to 

handle more than one explanatory variable. For 

k explanatory variables x1,…,xk, and binary 

response Y, the model is
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Odds and log-odds form
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Interpretation of coefficients

• As before, a unit increase in xj multiplies the 

odds by exp(j)

• A unit increase in xj adds j to the log-odds
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Grouped and ungrouped data in multiple LR

• To group two individuals in multiple LR, the 

individuals must have the same values for all
the covariates

• Each distinct set of covariates is called a 

covariate pattern

• If there are m distinct covariate patterns, we 

record for each pattern the number of 

individuals having that pattern (n) and the 

number of “successes” (r).
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Log -likelihood

• For grouped data, the log-likelihood is
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’s are chosen to maximise this expression, 

using IRLS

The i th covariate pattern is (xi1,…xik)
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For ungrouped data:

• The log-likelihood is
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Again, ’s are chosen to maximise this 

expression. Two forms give equivalent results
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Example: Kyphosis risk factors

• Kyphosis is a curvature of the spine that may be a 

complication of spinal surgery.

• In a study to determine risk factors for this condition, 

data were gathered on 83 children following surgery.

• Variables are

– Kyphosis: (binary, absent=no kyphosis, 

present=kyphosis)

– Age: continuous, age in months

– Start: continuous, vertebrae level of surgery

– Number: continuous, no of vertebrae involved.



Workshop on Analysis of  Clinical Studies – Can Tho University of  Medicine and Pharmacy – April 2012

Data

Kyphosis Age Number Start

1    absent  71      3     5

2    absent 158      3    14

3   present 128      4     5

4    absent   2      5     1

5    absent   1      4    15

6    absent   1      2    16

7    absent  61      2    17

8    absent  37      3    16

9    absent 113      2    16

10 present  59      6    12 

... 81 cases in all
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Caution

• In this data set Kyphosis is not a binary variable 
with values 0 and 1 but rather a factor with 2 levels 
“absent” and “present”:

levels(kyphosis.df$Kyphosis)

[1] "absent"  "present"

NB: if we fit a regression with Kyphosis as the 
response we are modelling the prob that Kyphosis is 
“present”: In general, R picks up the first level of the 
factor to mean “failure (ie in this case “absent” or Y=0) 
and combines all the other levels into “success” (in 
this case “present” or Y=1). 
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plot(kyphosis.df$age,kyphosis.df$Kyphosis)
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plot(gam(Kyphosis~s(Age) + Number + Start, 

family=binomial, data=kyphosis.df))
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Fitting (i)

Seems age is important, fit as a quadratic

> kyphosis.glm<-glm(Kyphosis~

Age + I(Age^2) + Start + Number,

family=binomial, data=kyphosis.df)

> summary(kyphosis.glm)
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Fitting (ii)

Call:

glm(formula = Kyphosis ~ Age + I(Age^2) + Start + Number, 

family = binomial, data = kyphosis.df)

Deviance Residuals: 

Min        1Q    Median        3Q       Max  

-2.23572  -0.51241  -0.24509  -0.06109   2.35494  

Coefficients:

Estimate Std. Error z value Pr(>|z|)   

(Intercept) -4.3834531  2.0478366  -2.141   0.0323 * 

Age          0.0816390  0.0343840   2.374   0.0176 * 

I(Age^2)    -0.0003965  0.0001897  -2.090   0.0366 * 

Start       -0.2038411  0.0706232  -2.886   0.0039 **

Number       0.4268603  0.2361167   1.808   0.0706 . 

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234  on 80  degrees of freedom

Residual deviance: 54.428  on 76  degrees of freedom

AIC: 64.428
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Points arising

• Start and Age clearly significant 

• Need age as quadratic

• What is deviance?

• How do we judge goodness of fit? Is there an 
analogue of R2?

• What is a dispersion parameter?

• What is Fisher Scoring?

• To answer these, we first need to explain 
deviance
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Deviance

Recall that our model had 2 parts

– The binomial assumption (r is Bin (n,) )

– The logistic assumption ( logit of  is linear)

If we only assume the first part,  we have the most 
general model possible, since we put no restriction 
on the probabilities. Our likelihood L is a function of 
the  ’s, one for each covariate pattern:
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Deviance (cont)
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The log-likelihood is (ignoring bits 

not depending on the ’s)

The maximum value of this (log)-

likelihood is when i= ri/ni 

If ri = 0 or ni then use 0 log 0 =0

Call this maximum value of L   Lmax
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Deviance (cont)

Lmax represents the biggest possible value of 

the likelihood for the most general model.

Now consider the logistic model, where the 

form of the probabilities is specified by the 

logistic function. Let LMod be the maximum 

value of the likelihood for this model.

The deviance for the logistic model is defined 

as 

Deviance =  2(log Lmax- log LMod )
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Deviance (cont)

• Intuitively, the better the logistic model, the 
closer Lmod is to Lmax, and the smaller the 
deviance should be

• How small is small?

• If m is small and the ni’s are large, then when 
the logistic model is true, the deviance has 
approximately a chi-squared distribution 
with m-k-1 degrees of freedom

– m: number of covariate patterns

– k: number of covariates 
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Deviance (cont)

• Thus, if the deviance is less than the upper 
95% percentage point of the appropriate chi-
square distribution, the logistic model fits 
well

• In this sense, the deviance is the analogue of 
R2

• NB Only applies to grouped data, when m is 
small and the n’s are large.

• Other names for deviance: model deviance, 
residual deviance (R)
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Null deviance

• At the other extreme, the most restrictive model 

is one where all the probabilities i are the same 

(ie don’t depend on the covariates). The 

deviance for this model is called the null 
deviance

• Intuitively, if none of the covariates is related to 

the binary response, the model deviance won’t 

be much smaller then the null deviance
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Graphical interpretation
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Example: budworm data

• Batches of 20 moths subjected to increasing 

doses of a poison, “success”=death

• Data is grouped: for each of 6 doses (1.0, 

2.0, 4.0, 8.0, 16.0, 32.0 mg) and each of male 

and female, we have 20 moths. 

• m=12 covariate patterns
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Example: budworm data

sex dose  r  n

1    0    1  1 20

2    0    2  4 20

3    0    4  9 20

4    0    8 13 20

5    0   16 18 20

6    0   32 20 20

7    1    1  0 20

8    1    2  2 20

9    1    4  6 20

10   1    8 10 20

11   1   16 12 20

Sex:

0=male

1=female
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3 models

• Null model: probabilities i are constant, 
equal to  say. Estimate of this common 
value is  total deaths/total moths = 
sum(r)/sum(n)   =111/240 = 0.4625

• Logistic model : probabilities estimated 
using fitted logistic model

• Maximal model: probabilities estimated by 
ri/ni
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Probabilities under the 3 models

> max.mod.probs<-budworm.df$r/budworm.df$n

> budworm.glm<-glm( cbind(r, n-r) ~ sex + dose, family=binomial, 

data = budworm.df)

> logist.mod.probs<-predict(budworm.glm, type="response")

> null.mod.probs<-sum(budworm.df$r)/sum(budworm.df$n)

> cbind(max.mod.probs,logist.mod.probs,null.mod.probs)

max.mod.probs logist.mod.probs null.mod.probs

1           0.05        0.2677414 0.4625

2           0.20        0.3002398         0.4625

3           0.45        0.3713931         0.4625

4           0.65        0.5283639         0.4625

5           0.90        0.8011063         0.4625

6           1.00        0.9811556         0.4625

7           0.00        0.1218892         0.4625

8           0.10        0.1400705         0.4625

9           0.30        0.1832034 0.4625

10          0.50        0.2983912 0.4625

11          0.60        0.6046013         0.4625

12          0.80        0.9518445         0.4625
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Plotting logits
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Plot of logits versus dose, M = maximal model fit, L = logistic model fit

Poor fit!

Logit = 
log(prob/(1-prob))
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Calculating the likelihoods

Likelihood is
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LMAX = 2.8947 x 10-7,    2 log LMAX = -30.1104

LMOD = 2.4459 x 10-13 ,  2 log LMOD = -58.0783

LNULL=2.2142 x 10-34 ,   2 log LNULL = -154.9860
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Calculating the deviances

summary(budworm.glm)

Call:

glm(formula = cbind(r, n - r) ~ sex + dose, family = 

binomial, data = budworm.df)

Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)  -1.1661     0.2615  -4.459 8.24e-06 ***

sex          -0.9686     0.3295  -2.939  0.00329 ** 

dose          0.1600     0.0234   6.835 8.19e-12 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 124.876  on 11  degrees of freedom

Residual deviance:  27.968  on  9  degrees of freedom

AIC: 64.078

Residual deviance = -30.1104 – (-58.0783) = 27.9679

Null deviance = -30.1104 – (-154.9860) =  124.8756
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Goodness of fit

• N’s reasonably large, m small

• Can interpret residual deviance as a 

measure of fit

> 1-pchisq(27.968,9)

[1] 0.0009656815

• Not a good fit!! (as we suspected from the 

plot)

• In actual fact log(dose) works better
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> logdose.glm<-glm( cbind(r, n-r) ~ sex + log(dose), 

family=binomial, data = budworm.df)

> summary(logdose.glm)

glm(formula = cbind(r, n - r) ~ sex + log(dose), family 

= binomial, data = budworm.df)Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)  -2.3724     0.3854  -6.156 7.46e-10 ***

sex          -1.1007     0.3557  -3.094  0.00197 ** 

log(dose)     1.5353     0.1890   8.123 4.54e-16 ***

Null deviance: 124.876  on 11  degrees of freedom

Residual deviance:   6.757 on  9  degrees of freedom

AIC: 42.867

> 1-pchisq( 6.757 ,9)

[1] 0.6624024

> 

Big reduction in deviance, was 

27.968

P-value now large

Improvement!


